Элементарная алгебра

  

С.Т. Завало. Элементарная алгебра. Изд-во "Просвещение", М., 1964 г.

В основу этой книги положен курс лекций по элементарной алгебре, читавшийся мною на протяжении ряда лет в Черкасском государственном педагогическом институте.

Первая глава книги — вступительная. В ней сжато изложены сведения о некоторых математических понятиях, с которыми читателю придется встретиться в последующих главах. В главах II—X изложен учебный материал по элементарной алгебре, предусмотренный программой специального курса элементарной математики для студентов-математиков педагогических институтов.

Книга рассчитана на студентов-математиков педагогических институтов. Она может быть также пособием для учителей математики средней школы.



Оглавление

Глава I. ПРЕДВАРИТЕЛЬНЫЕ ЗАМЕЧАНИЯ
§ 2. Понятия кольца и поля
§ 3. Упорядоченные поля
§ 4. Понятие функции и аналитического выражения
§ 5. Элементарные функции и их классификация
§ 6. Метод математической индукции
Глава II. ОБЩИЕ СВЕДЕНИЯ ОБ УРАВНЕНИЯХ
§ 1. Понятие уравнения. Решения уравнения
§ 2. Классификация уравнений, изучаемых в элементарной математике
§ 3. Равносильность уравнений
§ 4. Преобразование уравнений при их решении
Глава III. ЭЛЕМЕНТАРНЫЕ МЕТОДЫ РЕШЕНИЯ АЛГЕБРАИЧЕСКИХ И ДРОБНО-РАЦИОНАЛЬНЫХ УРАВНЕНИЙ С ОДНИМ НЕИЗВЕСТНЫМ
§ 1. Алгебраические уравнения n-й степени с одним неизвестным
§ 2. Корни квадратного трехчлена
§ 3. Исследование квадратного трехчлена над полем действительных чисел
§ 4. Двучленные уравнения
§ 5. Трехчленные уравнения, приводящиеся к квадратным
§ 6. Симметрические уравнения
§ 7. Алгебраическое уравнение n-й степени с рациональными коэффициентами
§ 8. Частные приемы решения уравнений высших степеней
§ 9. Дробно-рациональные уравнения
Глава IV. ТЕОРИЯ СОЕДИНЕНИЙ
§ 2. Перестановки
§ 3. Сочетания
§ 4. Размещения
§ 5. Перестановки с повторениями
§ 6. Сочетания с повторениями
§ 7. Размещения с повторениями
Глава V. БИНОМ НЬЮТОНА И ПОЛИНОМИАЛЬНАЯ ТЕОРЕМА
§ 1. Бином Ньютона
§ 2. Биномиальные коэффициенты и их основные свойства
§ 3. Треугольник Паскаля
§ 4. Полиномиальная теорема
§ 5. Вычисление сумм степеней первых n чисел натурального ряда
Глава VI. МНОГОЧЛЕНЫ ОТ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ
§ 1. Многочлен от нескольких переменных и его каноническая форма
§ 2. Однородный многочлен от n переменных и число его членов
§ 3. Число членов в каноническом представлении многочлена от n переменных
§ 4. Тождественность двух многочленов
§ 5. Тождественные преобразования многочленов. Тождество Лагранжа
§ 6. Применение метода неопределенных коэффициентов при выполнении алгебраических действий над многочленами
Глава VII. СИСТЕМЫ УРАВНЕНИЙ С НЕСКОЛЬКИМИ НЕИЗВЕСТНЫМИ
§ 1. Понятие системы уравнений
§ 2. Равносильность систем уравнений
§ 3. Уравнения и системы уравнений, являющиеся следствием данной системы уравнений
§ 4. Основные элементарные методы решения систем уравнений
§ 5. Решение нелинейных систем алгебраических уравнений элементарными методами
1. Решение системы двух уравнений с двумя неизвестными, из которых одно—второй степени, а другое — первой.
2. Решение системы двух уравнений второй степени с двумя неизвестными, которые не имеют членов первой степени.
3. Решение системы двух уравнений второй степени с двумя неизвестными в общем виде.
4. Решение системы двух однородных уравнений с двумя неизвестными.
5. Решение системы двух уравнений с двумя неизвестными, одно из которых однородное, а второе не однородное.
7. Решение нелинейной системы алгебраических уравнений, в состав которой входят линейные уравнения.
8. Решение нелинейной системы алгебраических уравнений, левая часть одного из которых представляется в виде произведения.
§ 6. Графическое решение нелинейных систем алгебраических уравнений с двумя неизвестными
Глава VIII. НЕРАВЕНСТВА
§ 1. Основные свойства неравенств
§ 2. Тождественные неравенства
§ 3. Применение неравенств для определения наибольших и наименьших значений
§ 4. Решение неравенств
§ 5. Решение алгебраических неравенств с одним неизвестным первой и второй степени
§ 6. Решение систем алгебраических неравенств первой степени с двумя неизвестными
§ 7. Применение неравенств для задания числовых и точечных множеств
Глава IX. ИРРАЦИОНАЛЬНЫЕ УРАВНЕНИЯ НАД ПОЛЕМ ДЕЙСТВИТЕЛЬНЫХ ЧИСЕЛ
§ 1. Корни с натуральными показателями в поле действительных чисел
§ 2. Тождественные преобразования иррациональных выражений в поле действительных чисел
§ 3. Решение иррациональных уравнений и систем, в состав которых входят иррациональные уравнения, в поле действительных чисел
Глава X. ПОКАЗАТЕЛЬНЫЕ И ЛОГАРИФМИЧЕСКИЕ УРАВНЕНИЯ В ПОЛЕ ДЕЙСТВИТЕЛЬНЫХ ЧИСЕЛ
§ 1. Теоретические основы решения показательных и логарифмических уравнений
§ 2. Решение показательных уравнений с одним неизвестным
§ 3. Решение логарифмических уравнений с одним неизвестным
§ 4. Решение трансцендентных уравнений, приводящихся к показательным и логарифмическим уравнениям
§ 5. Решение некоторых трансцендентных систем уравнений
§ 6. Графические способы решения трансцендентных уравнений и систем
ЛИТЕРАТУРА